CCINP - PSI 2023 - MATHÉMATIQUES

Durée: 4h

Exercice: Fonction de Bessel

Soit une fonction $f : \mathbb{R} \longrightarrow \mathbb{R}$ définie par :

$$\forall x \in \mathbb{R}, \quad f(x) = \int_0^{\pi} \cos(x \sin(t)) dt.$$

Pour tout $n \in \mathbb{N}$, on note :

$$W_n = \int_0^\pi \sin^{2n}(t) \, \mathrm{d}t.$$

- **Q1.** Montrer que f est bien définie sur \mathbb{R} .
- **Q2.** Montrer que f est de classe C^2 sur \mathbb{R} et donner des expressions sous forme d'intégrales de f'(x) et f''(x) pour tout $x \in \mathbb{R}$.
- **Q3.** Soit une fonction $h: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par :

$$\forall (x,t) \in \mathbb{R}^2, \quad h(x,t) = \cos(t)\sin(x\sin(t)).$$

Justifier l'existence de $\frac{\partial h}{\partial t}$, puis déterminer $\frac{\partial h}{\partial t}(x,t)$ pour tout $(x,t) \in \mathbb{R}^2$.

 $\mathbf{Q4.}$ En déduire que f est solution de l'équation différentielle :

$$(E) : xy'' + y' + xy = 0.$$

Q5. On suppose qu'il existe une solution de (E) développable en série entière notée $\sum_{n\geq 0} a_n x^n$ de rayon de convergence R>0.

Montrer que $a_1 = 0$ et que pour tout $n \in \mathbb{N}$, $n \ge 2$:

$$a_n = -\frac{a_{n-2}}{n^2}.$$

- **Q6.** En utilisant un théorème d'inversion série intégrale, montrer que f est développable en série entière au voisinage de 0 et exprimer les coefficients du développement de f en fonction des termes de la suite $(W_n)_{n\in\mathbb{N}}$.
- **Q7.** Déduire des questions précédentes que f est l'unique solution développable en série entière de (E) vérifiant $f(0) = \pi$.
- **Q8.** En déduire, pour tout $n \in \mathbb{N}$, une expression de W_n en fonction de n.

Problème 1 : Marche aléatoire sur $\mathbb Z$

On considère une particule se déplaçant sur une droite graduée par les entiers relatifs. Sa position à l'instant initial t = 0 est k = 0. À chaque instant $t \in \mathbb{N}^*$, elle se déplace aléatoirement de sa position $k \in \mathbb{Z}$ à la position k + 1 ou k - 1. Soit $p \in]0, 1[$. On définit sur un espace probabilisé $(\Omega, \Sigma, \mathbf{P})$ une suite de variables aléatoires indépendantes $(X_t)_{t \in \mathbb{N}^*}$ et identiquement distribuées dont la loi est définie par :

$$\forall t \in \mathbb{N}^*, \quad \mathbf{P}(X_t = 1) = p \quad \text{et} \quad \mathbf{P}(X_t = -1) = 1 - p.$$

Enfin, pour tout $n \in \mathbb{N}^*$, on pose $S_n = \sum_{t=1}^n X_t$.

Pour tout $t \in \mathbb{N}^*$, la variable aléatoire X_t modélise le déplacement de la particule à l'instant t. Si $X_t = 1$, la particule se déplace vers la droite. Si $X_t = -1$, la particule se déplace vers la gauche. Ainsi, pour tout $n \in \mathbb{N}^*$, S_n modélise la position de la particule après n déplacements.

On rappelle la formule de Stirling:

$$n! \underset{n \to +\infty}{\sim} \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$

Partie I - Un développement en série entière

- **Q9.** Soit $\alpha \in \mathbb{R}$ tel que $\alpha \notin \mathbb{N}$. Donner sans démonstration un développement en série entière de la fonction réelle $x \mapsto (1+x)^{\alpha}$ au voisinage de 0 en précisant son rayon de convergence.
- **Q10.** En déduire que pour tout $x \in]-1, 1[$:

$$\frac{1}{\sqrt{1-x}} = \sum_{n=0}^{+\infty} \frac{1}{2^{2n}} \binom{2n}{n} x^n.$$

Partie II - Probabilité de retour à l'origine

On définit la suite $(u_n)_{n\in\mathbb{N}^*}$ par :

$$\forall n \in \mathbb{N}^*, \quad u_n = \mathbf{P}(S_n = 0).$$

- **Q11.** Pour tout $t \in \mathbb{N}^*$, déterminer la loi de la variable aléatoire $\frac{X_t + 1}{2}$. En déduire que pour tout $n \in \mathbb{N}^*$, la variable aléatoire $\sum_{t=1}^{n} \frac{X_t + 1}{2}$ suit une loi binomiale dont on précisera les paramètres.
- **Q12.** En déduire que pour tout $n \in \mathbb{N}^*$:

$$u_n = \begin{cases} \binom{n}{\frac{n}{2}} (p(1-p))^{\frac{n}{2}} & \text{si } n \text{ est pair} \\ 0 & \text{sinon.} \end{cases}$$

Q13. Déterminer la limite de la suite $(u_{2n})_{n \in \mathbb{N}^*}$ lorsque n tend vers $+\infty$ selon les valeurs de p et interpréter le résultat.

Partie III - Nombre de passages par l'origine

Pour tout $j \in \mathbb{N}$, on note O_{2j} la variable aléatoire égale à 1 si la particule est à l'origine à l'instant t = 2j, 0 sinon. Pour tout $n \in \mathbb{N}$, on pose $T_n = \sum_{j=0}^n O_{2j}$. On note $\mathbf{E}[T_n]$ l'espérance de la variable aléatoire T_n .

Dans cette partie, on souhaite déterminer $\lim_{n \to \infty} \mathbf{E}[T_n]$.

Q14. Soit $n \in \mathbb{N}$. Que modélise la variable aléatoire T_n ?

Q15. Soit $j \in \mathbb{N}$. Déterminer la loi de la variable aléatoire O_{2j} . En déduire que :

$$\mathbb{E}[T_n] = \sum_{j=0}^n \binom{2j}{j} (p(1-p))^j.$$

- **Q16.** On suppose dans cette question que $p \neq \frac{1}{2}$. En utilisant le résultat de la **Q10**, calculer $\lim_{n \to +\infty} \mathbf{E}[T_n]$ et interpréter le résultat.
- **Q17.** On suppose dans cette question que $p = \frac{1}{2}$. Montrer par récurrence que :

$$\forall n \in \mathbb{N}, \quad \mathbf{E}\left[T_n\right] = \frac{2n+1}{2^{2n}} \binom{2n}{n}$$

et en déduire $\lim_{n\to+\infty} \mathbf{E}[T_n]$.

Problème 2 : Puissances de matrices et limites de suites de matrices

Soit $(n,p) \in \mathbb{N}^* \times \mathbb{N}^*$. On s'intéresse ici à la convergence de suites matricielles $(M_k)_{k \in \mathbb{N}}$ où pour tout $k \in \mathbb{N}$, $M_k \in \mathcal{M}_{n,p}(\mathbb{C})$ avec p = 1 (matrices colonnes) ou p = n (matrices carrées). Pour tout $k \in \mathbb{N}$, on note alors $M_k = (m_{i,j}^{(k)})_{(i,j) \in [\![1,n]\!] \times [\![1,p]\!]}$ ou plus simplement $M_k = (m_{i,j}^{(k)})$.

On suppose que l'espace vectoriel $\mathcal{M}_{n,p}(\mathbb{C})$ est muni d'une norme notée $\|\cdot\|$ indifféremment des valeurs de n et de p. En particulier, si $V \in \mathcal{M}_{n,1}(\mathbb{C})$, V est une matrice colonne assimilée à un vecteur de \mathbb{C}^n et on note $\|V\|$ sa norme.

On rappelle que les trois assertions suivantes sont équivalentes :

- la suite $(M_k)_{k\in\mathbb{N}}$ converge vers la matrice $A=(a_{i,j})\in\mathcal{M}_{n,p}(\mathbb{C})$;
- la suite des normes ($||M_k A||$)_{$k \in \mathbb{N}$} converge vers 0;
- pour tout $(i, j) \in [1, n] \times [1, p]$, la suite de nombres complexes $(m_{i,j}^{(k)})_{k \in \mathbb{N}}$ converge vers $a_{i,j} \in \mathbb{C}$ (convergence des coefficients de la matrice).

On s'intéresse en particulier à la suite des puissances itérées $(M^k)_{k\in\mathbb{N}}$ d'une matrice donnée $M\in\mathcal{M}_n(\mathbb{C})$.

Partie I - Diagonalisation et puissances d'une matrice particulière

Soit $n \in \mathbb{N}$ tel que $n \ge 3$. Pour tout $(a, b) \in \mathbb{C}^2$, on définit la matrice $M(a, b) \in \mathcal{M}_n(\mathbb{C})$ par :

$$M(a,b) = \begin{pmatrix} b & a & a & \cdots & a \\ a & b & a & \cdots & a \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ a & \cdots & a & b & a \\ a & \cdots & a & a & b \end{pmatrix}$$

et on note $P_{a,b}$ le polynôme caractéristique de la matrice M(a,b).

On note I_n la matrice identité de $\mathcal{M}_n(\mathbb{C})$ et on remarque que pour tous réels a et b,

$$M(a,b) = bI_n + aM(1,0).$$

- **Q18.** On suppose, dans cette question uniquement, que $(a, b) \in \mathbb{R}^2$. Montrer que dans ce cas M(a, b) est diagonalisable.
- Q19. Montrer que $V = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{C})$ est un vecteur propre de M(a,b) et déterminer la valeur propre associée.
- **Q20.** Montrer que $P_{1,0}(X) = (X (n-1))(X+1)^{n-1}$.
- **Q21.** On suppose que $a \neq 0$. Montrer que $P_{a,b}(X) = a^n P_{1,0}\left(\frac{X-b}{a}\right)$. En déduire l'ensemble des valeurs propres de M(a,b) ainsi que leurs multiplicités.
- **Q22.** On définit le polynôme $Q_{a,b} \in \mathbb{C}[X]$ par $Q_{a,b}(X) = (X (b-a))(X (b+(n-1)a))$. Montrer que $Q_{a,b}$ est un polynôme annulateur de M(a,b) et en déduire que M(a,b) est diagonalisable (on distinguera les cas a=0 et $a\neq 0$).
- **Q23.** Soit $k \in \mathbb{N}$. On suppose que $a \neq 0$. Déterminer le reste de la division euclidienne du polynôme X^k par le polynôme $Q_{a,b}$ et en déduire une expression de $M(a,b)^k$ comme combinaison linéaire de M(a,b) et de I_n .
- **Q24.** Supposons que |b-a| < 1 et |b+(n-1)a| < 1. Déterminer la limite de la suite de matrices $(M(a,b)^k)_{k \in \mathbb{N}}$.

Partie II - Limite des puissances d'une matrice

Soit $n \in \mathbb{N}^*$. On considère l'espace vectoriel \mathbb{C}^n muni de la norme $\|\cdot\|$. On note sa base canonique $\mathcal{B} = (e_1, \dots, e_n)$. Soit u un endomorphisme de \mathbb{C}^n vérifiant la propriété suivante :

$$\forall \lambda \in \mathrm{Sp}(u), \quad |\lambda| < 1$$

où $\operatorname{Sp}(u)$ est l'ensemble des valeurs propres de u. On note A la matrice de l'endomorphisme u dans la base \mathcal{B} . L'objectif de cette partie est de montrer que $\lim_{n \to \infty} A^k = 0$.

On suppose (sauf à la **Q29**) que A = T où T est une matrice triangulaire supérieure :

$$T = \begin{pmatrix} \lambda_1 & * & \cdots & \cdots & * \\ 0 & \lambda_2 & * & \cdots & * \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & * \\ 0 & \cdots & \cdots & 0 & \lambda_n \end{pmatrix}.$$

Q25. Montrer que $\lim_{k \to +\infty} ||u^k(e_1)|| = 0$ et en déduire $\lim_{k \to +\infty} u^k(e_1)$.

On suppose qu'il existe $i \in [1, n-1]$ tel que pour tout $j \in [1, i]$, $\lim_{k \to +\infty} u^k(e_j) = 0$.

Q26. Montrer qu'il existe $x \in \text{Vect}(e_j)_{j \in [\![1,i]\!]}$ tel que :

$$u(e_{i+1}) = \lambda_{i+1}e_{i+1} + \sum_{m=0}^{k-1} \lambda_{i+1}^{k-m-1} u^m(x).$$

Q27. Montrer que
$$\lim_{k\to+\infty} \left\| \sum_{m=0}^{k-1} \lambda_{i+1}^{k-m-1} u^m(x) \right\| = 0$$
. En déduire que $\lim_{k\to+\infty} u^k(e_{i+1}) = 0$.

Q28. Montrer alors que $\lim_{k \to +\infty} T^k = 0$.

Q29. On ne suppose plus que A est triangulaire supérieure. Montrer que $\lim_{k \to +\infty} A^k = 0$.

Partie III - Application à la méthode de Gauss-Seidel

Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{C})$ telle que :

$$\forall i \in [1, n], \quad |a_{i,i}| > \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{i,j}|.$$

On dit alors que A est une matrice à **diagonale strictement dominante**. On admet que dans ce cas A est inversible. On définit ensuite $M \in \mathcal{M}_n(\mathbb{C})$ et $F \in \mathcal{M}_n(\mathbb{C})$ de la manière suivante : pour tout $(i, j) \in [1, n]^2$,

--- si
$$i \ge j$$
, $m_{i,j} = a_{i,j}$ et $f_{i,j} = 0$;

— si
$$i < j$$
, $m_{i,j} = 0$ et $f_{i,j} = -a_{i,j}$.

Ainsi, A = M - F où F est la partie triangulaire supérieure de diagonale nulle de -A et où M est la partie triangulaire inférieure de A

Soit $Y \in \mathcal{M}_{n,1}(\mathbb{C})$. On note $X \in \mathcal{M}_{n,1}(\mathbb{C})$ l'unique matrice colonne telle que :

$$AX = Y$$
.

Le but de cette partie est de trouver une suite qui converge vers X.

Q30. Justifier que M est inversible.

Dans la suite de cette partie, on pose $B = M^{-1}F$. On définit par récurrence une suite de matrices colonnes $(X_k)_{k \in \mathbb{N}}$ avec $X_0 \in \mathcal{M}_{n,1}(\mathbb{C})$ quelconque et :

$$\forall k \in \mathbb{N}, \quad X_{k+1} = BX_k + M^{-1}Y.$$

Q31. Montrer que $X = BX + M^{-1}Y$.

Par convention, si $(u_j)_{j\in\mathbb{N}}$ est une suite de nombres complexes alors $\sum_{j=n+1}^n u_j = \sum_{j=1}^0 u_j = 0$.

Q32. Montrer que $FV = \lambda MV$. En déduire que :

$$\forall i \in [\![1,n]\!], \quad \lambda a_{i,i} v_i = -\left(\sum_{i=i+1}^n a_{i,j} v_j + \lambda \sum_{i=1}^{i-1} a_{i,j} v_j\right).$$

Q33. Montrer qu'il existe $i_0 \in [1, n]$ tel que $|v_{i_0}| = \max_{j \in [1, n]} |v_j|$ et $v_{i_0} \neq 0$. En déduire que :

$$\left|\lambda a_{i_0,i_0}\right| \le \left(\sum_{j=i_0+1}^n \left|a_{i_0,j}\right| + |\lambda| \sum_{j=1}^{i_0-1} \left|a_{i_0,j}\right|\right).$$

Q34. En déduire que $|\lambda| < 1$, puis que $\lim_{k \to +\infty} B^k = 0$.

Q35. Montrer que:

$$\forall k \in \mathbb{N}, \quad X^k - X = B^k(X_0 - X)$$

et conclure.

*** Fin du sujet ***