CCINP - MP 2024 - Mathématiques 1

Durée: 4h

Exercice 1

X est une variable aléatoire à valeurs dans $\mathbb N$ d'espérance finie.

Q1. Exprimer, pour k non nul, P(X = k) en fonction de P(X > k - 1) et de P(X > k).

Démontrer que pour tout $n \in \mathbb{N}$, $\sum_{k=1}^{n} k \mathbf{P}(X = k) = \sum_{k=0}^{n-1} \mathbf{P}(X > k) - n\mathbf{P}(X > n)$.

Démontrer le résultat de cours : $\mathbf{E}[X] = \sum_{k=0}^{+\infty} \mathbf{P}(X > k)$.

Q2. Soit $n \in \mathbb{N}^*$. Une urne contient n boules numérotées de 1 à n. On effectue, de façon équiprobable, p tirages successifs avec remise et on note X le plus grand nombre obtenu.

Calculer, pour tout entier naturel k, $\mathbf{P}(X \le k)$, puis donner la loi de X.

Q3. Calculer $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \left(\frac{k}{n}\right)^p$, puis en utilisant **Q1**, déterminer un équivalent pour n au voisinage de $+\infty$ de $\mathbf{E}[X]$.

Exercice 2

On considère les équations différentielles :

(E):
$$x^2y'' + 4xy' + (2 - x^2)y = 1$$

(H):
$$x^2y'' + 4xy' + (2 - x^2)y = 0$$

On note $I =]0, +\infty[$, $S_I(E)$ l'ensemble des solutions de (E) sur I et $S_I(H)$ l'ensemble des solutions de l'équation (H) sur I.

- **Q4.** Donner, en justifiant, la dimension de l'espace vectoriel $S_I(H)$.
- **Q5.** Démontrer qu'il existe une unique solution f de (E) sur I développable en série entière sur \mathbb{R} .

Vérifier que pour tout $x \in I$, $f(x) = \frac{\operatorname{ch}(x) - 1}{x^2}$

Q6. On note pour $x \in I$, $g(x) = -\frac{1}{x^2}$ et $h(x) = \frac{\sinh(x)}{x^2}$.

On admet dans cette question que $g \in S_I(E)$ et $h \in S_I(H)$.

Donner, sans calculs, l'ensemble $S_I(E)$.

Q7. Quelle est la dimension de l'espace vectoriel $S_{\mathbb{R}}(H)$ (solutions de (H) sur \mathbb{R})?

Problème

Il existe de nombreuses méthodes pour déterminer la valeur de $\sum_{n=1}^{+\infty} \frac{1}{n^2}$.

Ce problème propose deux méthodes différentes de recherche de la valeur de cette somme.

Q8. Question préliminaire.

Si on admet que
$$\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}$$
, que vaut la somme $\sum_{n=1}^{+\infty} \frac{1}{n^2}$?

Partie I

- **Q9.** On note, pour tout entier naturel n, $W_n = \int_0^{\pi/2} (\sin(x))^n dx$. Calculer la dérivée de la fonction $x \mapsto (\sin(x))^{n+1}$, puis déterminer une relation entre W_{n+2} et W_n . En déduire, pour tout entier naturel n, que $W_{2n+1} = \frac{2^{2n}(n!)^2}{(2n+1)!}$.
- **Q10.** Déterminer sur l'intervalle] 1, 1[, le développement en série entière des fonctions $x \mapsto \frac{1}{\sqrt{1-x^2}}$ et $x \mapsto \operatorname{Arcsin}(x)$.
- **Q11.** En déduire que pour tout $x \in \left[0, \frac{\pi}{2}\right], x = \sum_{n=0}^{+\infty} \frac{(2n)!}{2^{2n}(n!)^2(2n+1)} (\sin(x))^{2n+1}.$
- **Q12.** Justifier que $\int_0^{\pi/2} \left[\sum_{n=0}^{+\infty} \frac{(2n)!}{2^{2n}(n!)^2 (2n+1)} (\sin(x))^{2n+1} \right] dx = \sum_{n=0}^{+\infty} \int_0^{\pi/2} \frac{(2n)!}{2^{2n}(n!)^2 (2n+1)} (\sin(x))^{2n+1} dx.$
- **Q13.** En déduire la valeur de $\sum_{n=1}^{+\infty} \frac{1}{n^2}$.

Partie II

Q14. Donner sur l'intervalle]-1, 1[le développement en série entière de la fonction $x \mapsto \frac{1}{x^2 - 1}$, puis calculer l'intégrale $\int_0^1 \frac{\ln(x)}{x^2 - 1} dx$.

On donnera le résultat sous la forme de la somme d'une série numérique.

- Q15. On pose pour $x \in [0, +\infty[$, $f(x) = \int_0^{+\infty} \frac{\operatorname{Arctan}(xt)}{1 + t^2} dt$. Démontrer que la fonction f est bien définie et est continue sur l'intervalle $[0, +\infty[$.
- **Q16.** Établir que cette fonction f est de classe C^1 sur l'intervalle]0,1] et exprimer f'(x) comme une intégrale.
- Q17. Réduire au même dénominateur l'expression $\frac{t}{1+t^2} \frac{x^2t}{1+t^2x^2}$ et en déduire que pour tout $x \in]0,1[$, $f'(x) = \frac{\ln(x)}{x^2-1}$.
- **Q18.** Calculer f(1), puis en déduire la valeur de $\sum_{n=1}^{+\infty} \frac{1}{n^2}$.

*** Fin du sujet ***