PCSI : Quiz d’apprentissage


Algèbre

/10

PCSI

Calcul algébrique

Dix questions de calcul algébrique tirées au hasard dans la base de données.

1 / 10

(1-q)(1+q+q²+q^3) =

2 / 10

(x^2)^3 =

3 / 10

La racine de 2 est environ égale à

4 / 10

exp(3x)/exp(2x) =

5 / 10

La somme pour k allant de 1 à n de ln(k+1)-ln(k) est égale à

6 / 10

(x-1)(x-2) = ?

7 / 10

x² = y² si et seulement si

8 / 10

Si a<0, alors la racine carré de a² est

9 / 10

Si a et b sont des réels, (a+b)^3 =

10 / 10

Le nombre e est approximativement égal à

Votre score est

Le score moyen est 79%

0%

PCSI

Trigonométrie circulaire

Des questions autour du cercle trigonométrique : cosinus, sinus et tangente.

10 questions prises au hasard dans la base de données sur ce sujet.

1 / 10

cos(x+pi/2) =

2 / 10

tan(pi/4) =

3 / 10

cos(a+b)=

4 / 10

cos(a)cos(b)=

5 / 10

La fonction sinus est

6 / 10

sin(a)cos(b)=

7 / 10

sin(a-b)=

8 / 10

cos(a)+cos(b)=

9 / 10

L'équation sin(x) = 1/2 d'inconnue x réelle admet

10 / 10

tan(a+b)=

Votre score est

Le score moyen est 57%

0%

Nombres complexes et trigonométrie

Des questions sur les nombres complexes et leurs relations avec la trigonométrie.

10 questions prises au hasard dans la base.

1 / 10

"Pour tous réels a,b, on a exp(i*a)*exp(i*b) = exp(i*(a+b))" se démontre

2 / 10

tan(pi/4) =

3 / 10

arg(j) =

4 / 10

"Pour tout x réel, on a : cos(x) = 1/2*(exp(ix)+exp(-ix))"

5 / 10

La linéarisation de cos^3(x) est

6 / 10

Quels nombres complexes sont des imaginaires purs ?

(plusieurs réponses possibles)

7 / 10

cos(x+pi/2) =

8 / 10

Le module d'un produit est

9 / 10

tan(pi/2) =

10 / 10

sin(a-b)=

Votre score est

Le score moyen est 57%

0%

54

Dénombrement

Des questions sur le dénombrement.

10 questions prises au hasard dans la base.

1 / 10

Combien y a-t-il de bijections de [[1,6]] vers [[1,5]] ?

2 / 10

On tire successivement et sans remise p boules dans une urne contenant n boules numérotées de 1 à n. Combien y a-t-il de tirages distincts possibles ?

3 / 10

Combien y a-t-il de façons de cocher quatre cases distinctes dans un quadrillage à n lignes et n colonnes ?

4 / 10

Combien peut on réaliser de numéros de téléphones à huit chiffres ?

5 / 10

Combien y a-t-il de suites de Pile/Face possibles pour n lancers consécutifs d'une pièce ?

6 / 10

On tire successivement et avec remise p boules dans une urne contenant n boules numérotées de 1 à n. Combien y a-t-il de tirages distincts possibles ?

7 / 10

Combien existe-t-il d'applications surjectives de [[1,n]] vers {0,1} ?

8 / 10

Combien peut-on former de matrices carrées de taille n avec des coefficients dans {-1,0,1} ?

9 / 10

On lance successivement trois fois un dé à six faces. Combien y a-t-il de suites de résultats possibles ?

10 / 10

Combien existe-t-il de mains de cinq cartes possibles avec un jeu de 32 cartes ?

Votre score est

Le score moyen est 55%

0%

Polynômes

Des questions sur les polynômes à coefficients réels ou complexes.

10 questions prises au hasard dans la base.

Si P est un polynôme de degré n tel que P^(k)(0) = 0 pour tout k compris entre 0 et n, alors P est nul.

La fonction cos est polynomiale

Soit P = X^4+2X^2+1. Alors

La décomposition en éléments simples de (X+3)/(X²-3X+2) est E(X) + a/(X-1) + b/(X-2) avec

Dans R[X], le polynôme X^6+1 se factorise en un produit de :

Soit P un polynôme qui s'écrit aX²+bX+c avec (a,b,c) scalaires. Supposons que P(1) = P(-1) = P(0) = 0. Alors

Un polynôme réel de degré impair admet toujours une racine réelle.

Soit P un polynôme à coefficients complexes tel que P(j) = 0. Alors

Dans R[X], le polynôme X^6-1 se factorise en un produit de

Soit P(X) = (X-1)(X²-4X+3). Alors :

Votre score est

Le score moyen est 43%

0%


Analyse

PCSI

Dérivées et primitives

Des calculs classiques de dérivées et de primitives.

10 questions prises au hasard dans la base.

1 / 10

La dérivée de log_2(3x^2+1) est

2 / 10

Une primitive de 1/(1+x²) est :

3 / 10

Une primitive de tan^2(x) est

4 / 10

Une primitive de x^n est :

5 / 10

Une primitive de ln(x) est

6 / 10

La dérivée de ch(3x) est

7 / 10

La dérivée de exp(3x²+x+1) est

8 / 10

Une primitive de 1/(x-a) est

9 / 10

Si u est de classe C^1, une primitive de u'*u^n est

10 / 10

Une primitive sur R* de 1/x est

Votre score est

Le score moyen est 52%

0%


Fondamentaux du formalisme

Les symboles mathématiques

Alphabet grec, symboles variés, etc. Quels sont leurs noms ?

Testez vos connaissances en 10 questions prises au hasard dans la base.

1 / 10

Ω se lit

2 / 10

ζ se lit

3 / 10

Γ se lit

4 / 10

Ξ se lit

5 / 10

Θ se lit

6 / 10

Φ se lit

7 / 10

Δ se lit

8 / 10

γ se lit

9 / 10

Que signifie ce symbole ?

10 / 10

χ se lit

Votre score est

Le score moyen est 80%

0%

PCSI

Formalisme et logique

Questions autour de la logique formelle et des fondamentaux du formalisme mathématique.

1 / 10

La réciproque de "P implique Q" est :

2 / 10

La contraposée de "P implique Q" est

3 / 10

L'assertion "Pour tout réel x strictement positif, il existe un réel y tel que y<x" est :

4 / 10

L'ensemble des solutions réelles de l'équation x²+1=0

5 / 10

Soit f la fonction définie sur R par f(x) = cos(x)+1. Sélectionnez les assertions qui sont vraies.

6 / 10

Si I=[-1,2] et J = [1,3], alors I privé de J est l'ensemble :

7 / 10

Soit x un réel. Si on note P l'assertion "x est un entier relatif" et Q l'assertion "x est le carré d'un entier", alors on a :

8 / 10

Une propriété P(n) qui s'initialise pour n=1 et qui est héréditaire est vraie :

9 / 10

Une fonction f est décroissante sur I si et seulement si, pour tous x et y dans I, on a :

10 / 10

L'intersection de deux intervalles non disjoints est un intervalle

Votre score est

Le score moyen est 58%

0%


Informatique

ITC

Python - niveau 1

Dix questions simples, prises au hasard dans la base de données et portant sur les bases de la syntaxe Python. Ces questions sont pour l'essentiel accessibles dès le début du cursus en CPGE.

1 / 10

Qu'affiche ce programme si, dans la console interactive, l'utilisateur saisit 4 ?

2 / 10

Après exécution de l'instruction L = [k**2 for k in range(1,10,2)], la liste L contient les valeurs :

3 / 10

Que renvoie l'instruction [1,2,3]+[3,4,5]

4 / 10

Que renvoie l'instruction 3*'a'

5 / 10

Que trace le script suivant ?

6 / 10

Que renvoie l'instruction suivante : True or False

7 / 10

Si L = [1,2,3,4,5], que renvoie L[-1] ?

8 / 10

Si a est un flottant et n est un entier, mystere(a,n) calcule :

9 / 10

Si L = ['a','b','c','d','e'], que renvoie L[1:3] ?

10 / 10

Après exécution du script suivant, que renvoie l'instruction type(f(2)) ?

Votre score est

Le score moyen est 53%

0%