Archives par mot-clé : correction

E3A-Polytech MP 2023

Le sujet d’E3A de 2023 était classiquement composé de quatre exercices, contenant généralement des questions de cours, et couvrant assez largement les parties les plus classiques du programme de MPSI et de MP : algèbre linéaire, réduction, polynômes à une indéterminée, fonctions réelles d’une variable réelle, intégrales généralisées, intégrales à paramètres et variables aléatoires.

CCINP PSI 2023

Le sujet de mathématiques de CCINP PSI 2023 était composé d’un exercice d’analyse (fonction de Bessel), d’un problème de probabilités (marches aléatoires sur Z) et d’un problème d’algèbre linéaire (convergence des puissances itérées d’une matrice).

EM Lyon 2020 – voie E

Pour son édition 2020, le sujet d’EM Lyon est étrangement proche du sujet d’ECRiCOME, que ce soit dans sa composition générale ou dans les thèmes précis traités. C’est plutôt une bonne nouvelle puisque le sujet d’ECRiCOME était bien composé. On observera l’absence de probabilités discrètes mais l’importance de l’estimation cette année dans les deux épreuves, ce qui était hautement… improbable !

ECRiCOME 2020 – Voie E

ECRiCOME a proposé cette année un sujet très classique composé de trois exercices qui récompenseront les étudiants travailleurs et méthodiques.

EDHEC – 2019 – voie E

Ce sujet d’EDHEC est classiquement composé de trois exercices et un problème couvrant une large partie du programme d’ECE. Le premier exercice traite d’algèbre linéaire, le deuxième de probabilités discrètes, le troisième d’intégration et de suites. Le problème porte quant à lui sur les probabilités continues et l’estimation.

EDHEC – 2018 – Voie E

Une épreuve d’EDHEC complète et classique comportant un exercice d’algèbre linéaire, un exercice sur les variables aléatoires discrètes, un exercice sur les variables aléatoires à densité et l’estimation et un problème d’analyse réelle (fonction définie par une intégrale et suites réelles).

Agrégation interne 2018 – Première composition

La première composition de l’agrégation interne 2018 de mathématiques a pour objets principaux l’algèbre linéaire et les polynômes à une indéterminée. L’objectif spécifique du problème est de démontrer la positivité de deux déterminants particuliers.

On retrouve au fil de ce sujet de nombreux objets classiques de l’algèbre : densité du groupe linéaire, résultant de deux polynômes, discriminant, division euclidienne, etc. Aucune connaissance théorique préalable n’est vraiment requise pour aborder ce sujet mais une habitude des techniques et arguments classiques est certainement indispensable pour en venir à bout.